If it's not what You are looking for type in the equation solver your own equation and let us solve it.
339x-4.9x^2=0
a = -4.9; b = 339; c = 0;
Δ = b2-4ac
Δ = 3392-4·(-4.9)·0
Δ = 114921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{114921}=339$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(339)-339}{2*-4.9}=\frac{-678}{-9.8} =69+1/5.4444444444446 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(339)+339}{2*-4.9}=\frac{0}{-9.8} =0 $
| -3=n+7 | | (x+3/3)+3x=4 | | x+3/3+3x=4 | | 6.15x+6.15x(6.15x)=45 | | 16=4(x+6)-8x | | 3x2+12x-36=0 | | -6(6-x)=-12 | | 3^9x+7=17 | | 6m+3=29 | | 5a-9=4-3a | | 6k-79=78 | | 3a+8=7a+2 | | 11m-8=-4(m+3)+4 | | 5-6a=1-a | | 7m+3=98 | | -9.5=y/8+3.3 | | 9/3x(2+1)=0 | | 5y×5=40 | | 20=10w-97 | | |a/8|=1 | | x/9=3/13 | | 9/3x(2+1)=9 | | 7y+44=y+68 | | x^2=300000 | | 2(x-4)=5(4-2x)+4 | | 7x+4=13x-18 | | 9/3x(2+1)=1 | | 19z+36=3z+68 | | 4+⅔x=14 | | 500x+200=800 | | 2z/9-5=-6 | | 7x+81=18 |